8 research outputs found

    A plant-like battery : a biodegradable power source ecodesigned for precision agriculture

    Get PDF
    The natural environment has always been a source of inspiration for the research community. Nature has evolved over thousands of years to create the most complex living systems, with the ability to leverage inner and outside energetic interactions in the most efficient way. This work presents a flow battery profoundly inspired by nature, which mimics the fluid transport in plants to generate electric power. The battery was ecodesigned to meet a life cycle for precision agriculture (PA) applications; from raw material selection to disposability considerations, the battery is conceived to minimize its environmental impact while meeting PA power requirements. The paper-based fluidic system relies on evaporation as the main pumping force to pull the reactants through a pair of porous carbon electrodes where the electrochemical reaction takes place. This naturally occurring transpiration effect enables to significantly expand the operational lifespan of the battery, overcoming the time-limitation of current capillary-based power sources. Most relevant parameters affecting the battery performance, such as evaporation flow and redox species degradation, are thoroughly studied to carry out device optimization. Flow rates and power outputs comparable to those of capillary-based power sources are achieved. The prototype practicality has been demonstrated by powering a wireless plant-caring device. Standardized biodegradability and phytotoxicity assessments show that the battery is harmless to the environment at the end of its operational lifetime. Placing sustainability as the main driver leads to the generation of a disruptive battery concept that aims to address societal needs within the planetary environmental boundaries. A biodegradable battery inspired by the transpiration pull of liquids in plants has been ecodesigned to power wireless sensors and then be safely biodegraded or composted, resembling the way a plant comes back to nature at the end of its lifecycle

    Primary batteries paradigm redefinition within the environmental planetary boundaries

    Get PDF
    Programa de Doctorat en Electroquímica, Ciència i TecnologiaDigital technologies are generating a global transformation with economic, social, and environmental implications. Digitalization has already shown many benefits to society; however, it is also generating a fierce debate on how to ensure a positive, sustainable, and just social impact. As this global trend of society digitalization speeds up, planned obsolescence and linear economy models are consequently generating an unprecedented amount of Waste Electrical and Electronic Equipment (WEEE) or e-waste. In particular, batteries, which are today’s ubiquitous power sources in portable EEE, represent a critical component in the generated WEEE. For portable batteries to stop contributing to environmental degradation, and become an example for sustainable technological development, it is crucial to change the way the batteries value chain is approached. This thesis presents a new rationale for sustainable portable batteries development in which the complete life cycle is analyzed and redefined under ecodesign principles and advocates for a ’tailor-made’ approach, where the battery ends up integrated into the application value chain. The rationale, inspired by the doughnut economy model, sets an environmental ceiling and a performance foundation for portable batteries, defining a safe space for sustainable and environmentally conscious battery development. The work has been organized into five chapters: one introductory chapter, a second chapter in which the disruptive rationale for battery development is established, and then three experimental chapters each one devoted to a different battery development. Each of the three disruptive primary battery concepts presented has been designed under different frameworks for a specific application. The first battery is a flow battery profoundly inspired by nature, which mimics fluid transport in plants to generate electric power. Conceived for precision agriculture, biodegradability has been matched as an alternative end-of-life scenario. The second battery has been ecodesigned for smart packing applications with paper and cardboard recycling as inherent end-of-life. In order to fulfill the specific requirements of such recycling process, this chapter revolves around the development of the materials that compose the battery. In particular, laser-induced graphene over cardboard is assessed as current collector material, and an ionic conductive bio-based hydrogel is presented as a battery matrix to contain the active species. The last chapter explores the possibility of local and decentralized battery development. The conceptualization of the battery is located in coffee-growing communities in Chiapas, Mexico. In these regions there is a lack of proper battery recycling, thus the development of a biodegradable battery becomes especially appealing. The project viability has been assessed through interviewing and sharing it with the local population. This way, the project framework has been created by embracing local people’s needs and aspirations, to conceive a sustainable battery for which fabrication processes can be implemented in the communities. The thesis’s final goal is to raise awareness and understanding on how our individual choices and actions, even at a research-level, collectively affect our natural resources. It demonstrates that feasible and efficient solutions can be created by placing sustainability as a core priority. In essence, the batteries presented in this thesis are the evidence that it is imperative but also possible to redefine society’s technological priorities to consciously reduce humanity’s environmental impact.La digitalización está generando una transformación a nivel global con implicaciones tanto económicas, como sociales y ambientales. A pesar de haber demostrado numerosos beneficios para la sociedad, la digitalización y el consumo de tecnología está generando un inmenso debate sobre cómo asegurar que su impacto sea positivo, sostenible y socialmente justo. A la vez que ocurre esta digitalización masiva, la obsolescencia programada y el modelo de economía basado en la linealidad están generando una cantidad de residuos de aparatos eléctricos y electrónicos (RAEE) sin precedentes. En particular, las baterías, que debido a su idoneidad en muchas áreas se han convertido en las fuentes de energía omnipresentes de hoy en día para alimentar dispositivos electrónicos portátiles, representan un componente crítico dentro del RAEE generado. Para que las baterías portátiles dejen de contribuir a la degradación ambiental y se conviertan en un ejemplo de desarrollo tecnológico sostenible, es crucial cambiar la forma en que se aborda la cadena de valor de las baterías. Esta tesis presenta una nueva metodología para el desarrollo de baterías portátiles sostenibles, mediante la cual se analiza y redefine el ciclo de vida completo bajo los principios del ecodiseño y se aboga por un enfoque ’a medida’ de tal manera que la batería acaba integrándose en la cadena de valor de la aplicación que va a alimentar. La metodología, inspirada en el modelo de economía del donut, establece un techo ambiental y un suelo de prestaciones para las baterías portátiles, definiendo de esta manera un espacio seguro para el desarrollo de baterías sostenibles y respetuosas con el medio ambiente. El trabajo se ha organizado en cinco capítulos: un capítulo introductorio, un segundo capítulo en el que se establece la lógica disruptiva para el desarrollo de baterías y luego tres capítulos experimentales, cada uno dedicado a un desarrollo de batería diferente. Cada uno de los tres conceptos disruptivos de baterías primaria presentados ha sido diseñado para un sector y campo de aplicación específico. La primera es una batería de flujo profundamente inspirada en la naturaleza, que imita el transporte de fluidos en las plantas para generar energía eléctrica. Concebida para la agricultura de precisión, la biodegradabilidad se ha demostrado como escenario alternativo para final de su vida útil. La segunda batería ha sido ecodiseñada para aplicaciones de paquetería inteligente, en este caso, se propone reciclar la batería con el papel y el cartón una vez usada y descargada. Para cumplir con los requisitos de fin de vida, este capítulo gira en torno al desarrollo de los materiales que componen la batería. En particular, el grafeno inducido por láser sobre cartón se evalúa como material de colector de corriente, y un hidrogel basado en polímeros naturales se ha sintetizado como conductor iónico para contener las especies electroactivas. El último capítulo explora la posibilidad de desarrollar baterías de forma local y descentralizada. La conceptualización de la batería se ubica en comunidades cafetaleras de Chiapas, México. En estas regiones hay una falta de infraestructura de reciclaje adecuada para este tipo de dispositivos, por lo que el desarrollo de una batería biodegradable se vuelve especialmente atractivo. La viabilidad del proyecto ha sido evaluada a través de entrevistas y compartiéndolo con la población local. De esta manera, el marco del proyecto se ha creado a partir de las necesidades y aspiraciones de la población local, para concebir una batería sostenible cuyos procesos de fabricación se pueden implementar en dichas comunidades. El objetivo final de la tesis es concienciar de cómo nuestras elecciones y acciones individuales, incluso en la investigación, afectan colectivamente a nuestros recursos naturales. La tesis demuestra que se pueden crear soluciones viables y eficientes colocando la sostenibilidad como prioridad absoluta. En esencia, las baterías presentadas en esta tesis son la evidencia de que es imperativo pero también posible redefinir las prioridades tecnológicas de la sociedad para reducir conscientemente el impacto ambiental de la humanidad

    Primary bateries paradigma redefinition within the enviromental planetary boundaries

    Full text link
    [eng] gital technologies are generating a global transformation with economic, social, and environmental implications. Digitalization has already shown many benefits to society; however, it is also generating a fierce debate on how to ensure a positive, sustainable, and just social impact. As this global trend of society digitalization speeds up, planned obsolescence and linear economy models are consequently generating an unprecedented amount of Waste Electrical and Electronic Equipment (WEEE) or e-waste. In particular, batteries, which are today’s ubiquitous power sources in portable EEE, represent a critical component in the generated WEEE. For portable batteries to stop contributing to environmental degradation, and become an example for sustainable technological development, it is crucial to change the way the batteries value chain is approached. This thesis presents a new rationale for sustainable portable batteries development in which the complete life cycle is analyzed and redefined under ecodesign principles and advocates for a ’tailor-made’ approach, where the battery ends up integrated into the application value chain. The rationale, inspired by the doughnut economy model, sets an environmental ceiling and a performance foundation for portable batteries, defining a safe space for sustainable and environmentally conscious battery development. The work has been organized into five chapters: one introductory chapter, a second chapter in which the disruptive rationale for battery development is established, and then three experimental chapters each one devoted to a different battery development. Each of the three disruptive primary battery concepts presented has been designed under different frameworks for a specific application. The first battery is a flow battery profoundly inspired by nature, which mimics fluid transport in plants to generate electric power. Conceived for precision agriculture, biodegradability has been matched as an alternative end-of-life scenario. The second battery has been ecodesigned for smart packing applications with paper and cardboard recycling as inherent end-of-life. In order to fulfill the specific requirements of such recycling process, this chapter revolves around the development of the materials that compose the battery. In particular, laser-induced graphene over cardboard is assessed as current collector material, and an ionic conductive bio-based hydrogel is presented as a battery matrix to contain the active species. The last chapter explores the possibility of local and decentralized battery development. The conceptualization of the battery is located in coffee-growing communities in Chiapas, Mexico. In these regions there is a lack of proper battery recycling, thus the development of a biodegradable battery becomes especially appealing. The project viability has been assessed through interviewing and sharing it with the local population. This way, the project framework has been created by embracing local people’s needs and aspirations, to conceive a sustainable battery for which fabrication processes can be implemented in the communities. The thesis’s final goal is to raise awareness and understanding on how our individual choices and actions, even at a research-level, collectively affect our natural resources. It demonstrates that feasible and efficient solutions can be created by placing sustainability as a core priority. In essence, the batteries presented in this thesis are the evidence that it is imperative but also possible to redefine society’s technological priorities to consciously reduce humanity’s environmental impact.[spa] La digitalización está generando una transformación a nivel global con implicaciones tanto económicas, como sociales y ambientales. A pesar de haber demostrado numerosos beneficios para la sociedad, la digitalización y el consumo de tecnología está generando un inmenso debate sobre cómo asegurar que su impacto sea positivo, sostenible y socialmente justo. A la vez que ocurre esta digitalización masiva, la obsolescencia programada y el modelo de economía basado en la linealidad están generando una cantidad de residuos de aparatos eléctricos y electrónicos (RAEE) sin precedentes. En particular, las baterías, que debido a su idoneidad en muchas áreas se han convertido en las fuentes de energía omnipresentes de hoy en día para alimentar dispositivos electrónicos portátiles, representan un componente crítico dentro del RAEE generado. Para que las baterías portátiles dejen de contribuir a la degradación ambiental y se conviertan en un ejemplo de desarrollo tecnológico sostenible, es crucial cambiar la forma en que se aborda la cadena de valor de las baterías. Esta tesis presenta una nueva metodología para el desarrollo de baterías portátiles sostenibles, mediante la cual se analiza y redefine el ciclo de vida completo bajo los principios del ecodiseño y se aboga por un enfoque ’a medida’ de tal manera que la batería acaba integrándose en la cadena de valor de la aplicación que va a alimentar. La metodología, inspirada en el modelo de economía del donut, establece un techo ambiental y un suelo de prestaciones para las baterías portátiles, definiendo de esta manera un espacio seguro para el desarrollo de baterías sostenibles y respetuosas con el medio ambiente. El trabajo se ha organizado en cinco capítulos: un capítulo introductorio, un segundo capítulo en el que se establece la lógica disruptiva para el desarrollo de baterías y luego tres capítulos experimentales, cada uno dedicado a un desarrollo de batería diferente. Cada uno de los tres conceptos disruptivos de baterías primaria presentados ha sido diseñado para un sector y campo de aplicación específico. La primera es una batería de flujo profundamente inspirada en la naturaleza, que imita el transporte de fluidos en las plantas para generar energía eléctrica. Concebida para la agricultura de precisión, la biodegradabilidad se ha demostrado como escenario alternativo para final de su vida útil. La segunda batería ha sido ecodiseñada para aplicaciones de paquetería inteligente, en este caso, se propone reciclar la batería con el papel y el cartón una vez usada y descargada. Para cumplir con los requisitos de fin de vida, este capítulo gira en torno al desarrollo de los materiales que componen la batería. En particular, el grafeno inducido por láser sobre cartón se evalúa como material de colector de corriente, y un hidrogel basado en polímeros naturales se ha sintetizado como conductor iónico para contener las especies electroactivas. El último capítulo explora la posibilidad de desarrollar baterías de forma local y descentralizada. La conceptualización de la batería se ubica en comunidades cafetaleras de Chiapas, México. En estas regiones hay una falta de infraestructura de reciclaje adecuada para este tipo de dispositivos, por lo que el desarrollo de una batería biodegradable se vuelve especialmente atractivo. La viabilidad del proyecto ha sido evaluada a través de entrevistas y compartiéndolo con la población local. De esta manera, el marco del proyecto se ha creado a partir de las necesidades y aspiraciones de la población local, para concebir una batería sostenible cuyos procesos de fabricación se pueden implementar en dichas comunidades. El objetivo final de la tesis es concienciar de cómo nuestras elecciones y acciones individuales, incluso en la investigación, afectan colectivamente a nuestros recursos naturales. La tesis demuestra que se pueden crear soluciones viables y eficientes colocando la sostenibilidad como prioridad absoluta. En esencia, las baterías presentadas en esta tesis son la evidencia de que es imperativo pero también posible redefinir las prioridades tecnológicas de la sociedad para reducir conscientemente el impacto ambiental de la humanidad

    An Organic Redox Flow Cell‐Inspired Paper‐Based Primary Battery

    Get PDF
    A portable paper‐based organic redox flow primary battery using sustainable quinone chemistry is presented. The compact prototype relies on the capillary forces of the paper matrix to develop a quasi‐steady flow of the reactants through a pair of porous carbon electrodes without the need of external pumps. Co‐laminar capillary flow allows operation Under mixed‐media conditions, in which an alkaline anolyte and an acidic catholyte are employed. This feature enables higher electrochemical cell voltages during discharge operation and the utilization of a wider range of available species and electrolytes and provides the advantage to form a neutral or near‐neutral pH as the electrolytes neutralize at the absorbent pad, which allows a safe disposal after use. The effects of the device design parameters have been studied to enhance battery features such as power output, operational time, and fuel utilization. The device achieves a faradaic efficiency of up to 98 %, which is the highest reported in a capillary‐based electrochemical power source, as well as a cell capacity of up to 11.4 Ah L−1 cm−2, comparable to state‐of‐the‐art large‐scale redox flow cells.The funding for this research provided through the Science for Solving Society's Problems Challenge by the Electrochemical Society and the Bill & Melinda Gates Foundation is highly appreciated. P.A. acknowledges support from CONACyT through a scholarship to pursue postgraduate studies. N.S. is thankful for financial support received from ERC Consolidator Grant (SUPERCELL—GA.648518). Additional support from the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI) and British Columbia Knowledge Development Fund (BCKDF) is also acknowledged. E.K. acknowledges support from the Canada Research Chairs program.Peer reviewe

    Biopolymer electrolyte membranes (BioPEMs) for sustainable primary redox batteries

    No full text
    The proliferation of portable electronic devices has resulted in an increase of e-waste that is generated after their use. One of the most hazardous components in e-waste are batteries, due to their content of heavy metals and toxic chemicals. Fuel cells and redox flow batteries have been recognized as more sustainable alternatives to Li-based batteries for powering portable applications. Although they provide comparable energy and power densities, they still face some challenges because they rely on proton exchange membranes based on nonenvironmentally friendly, high-priced perfluorosulfonic acid copolymers that require energy-intense manufacturing and recycling procedures. In this work, eco-friendly and sustainable biopolymer electrolyte membranes (BioPEMs) are synthesized from biopolymers like chitosan, cellulose, and starch. These BioPEMs bring forth advantages in performance, sustainability, and cost. Additionally, they present good chemical and mechanical stability, high ionic conductivity in the same order of magnitude as Nafion membranes. Two alternatives of cellulose-chitosan based BioPEMs are successfully applied into primary redox batteries using benign eco-friendly redox chemistries, delivering open circuit voltages above 0.75 V and power output up to 2.5 mW cm(-2). These results demonstrate BioPEMs capability to improve biodegradable batteries in sectors requiring a transient electrical energy, such as environmental monitoring, agriculture, or packaging.P.P.A. acknowledges support from CONACyT through a scholarship to pursue postgraduate studies. N.S. thanks financial support received from ERC Consolidator Grant (SUPERCELL - GA.648518). The authors thank the FCT(Fundação para a Ciência e Tecnologia) for financial support under the framework of Strategic Funding Grant Nos. UID/QUI/0686/2019 and UID/QUI/50006/2019

    Promoure estratègies d’aprenentatge col·laboratiu basades en creative methods per afavorir la participació activa de les estudiants en accions de grup

    No full text
    Projecte: 2020PID-UB/021Aquesta actuació a buscat afavorir l'aprenentatge col·laboratiu entre les estudiants dels graus de Belles Arts, Pedagogia, Educació Social, Mestre d’Educació Primària i Mestre d’Educació infantil, a partir de promoure la col·laboració i la participació activa a través d'estratègies creatives. El present document mostra com l’aplicació de mètodes creatius, dins de l’aprenentatge col·laboratiu, millora la responsabilitat, la distribució de rols, la resolució de problemes i la reflexió sobre el procés d’aprenentatge en l’alumnat universitàri.RIMD

    Structural and Functional Remodeling of the Brain Vasculature Following Stroke

    No full text
    corecore